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Abstract
We discuss the impact of risk sharing and asset-liability management on capital require-

ments. Our analysis contributes to the evaluation of the merits and deficiencies of different
risk measures. In particular, we highlight that the class of V@R-based risk measures allows for
a substantial reduction of the total capital requirement in corporate networks that share risks
between entities. We provide case studies that complement previous theoretical results and
demonstrate their practical relevance. For large networks, optimal asset-liability management
is often contrary to those strategies that are desirable from a regulatory point of view.

Keywords: Corporate Networks, Optimal Risk Sharing, Distortion Risk Measures, Value at Risk,
Average Value at Risk, Range Value at Risk, Solvency Capital Requirement.

1 Introduction
Capital requirements of insurance companies or banks serve as a protection of policy holders,
banking customers, and creditors. They provide a buffer against downside risk, i. e., the adverse
random fluctuations of the financial resources of a company. In internal models of financial insti-
tutions such capital requirements are computed on the basis of the simulated distribution of the
firm’s book value of equity at a finite time horizon, also called the future net asset value. The
resulting capital requirements depend on the risk measures that are used. While the regulation
scheme Solvency II is based on the risk measure value at risk (V@R), the Swiss Solvency Test
employs a coherent risk measure, average value at risk (AV@R), also known as expected shortfall.
The influence of risk measures on capital requirements as well as their properties have been the
subject of intense scientific research over the last twenty years, see, e. g., Föllmer & Schied (2016)
or Föllmer & Weber (2015).

In this paper, we discuss the impact of risk sharing and asset-liability management on capital
requirements. This investigation will contribute to the evaluation of the merits and deficiencies
of different risk measures. In particular, we highlight that the class of V@R-based risk measures,
as defined in Weber (2018), allows for a substantial reduction of the total capital requirement in
corporate networks that share risks between entities. We provide case studies that complement
the theoretical analysis of Embrechts, Liu & Wang (2018) and Weber (2018) and illustrate their
practical relevance. In addition, we refine in Section 2.2.2 the tail allocations suggested in these
papers to ensure that downside risk is shared in an approximately symmetric manner. Such an
analysis of optimal risk sharing within a model for asset-liability management is – to the best of
our knowledge – new to the literature.
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The paper is structured as follows: Section 2.1 first reviews the notion of solvency capital
requirements, emphasizing that the definition commonly used in practice deviates from an al-
ternative definition that is naturally derived from the notion of acceptability in the theory of
monetary risk measures. Second, in Section 2.2, we consider risk sharing between entities. If
networks of companies are not required to report a total capital requirement on the basis of
a consolidated balance sheet, risk sharing may serve as an instrument to reduce required capi-
tal. We review the general risk sharing problem and the notion of inf-convolutions, summarize
theoretical results for distortion risk measures of Embrechts et al. (2018) or Weber (2018) and
refine the allocations of the distribution’s tail within the network. Section 3 introduces a model
setting that admits the joint analysis of asset-liability management and risk sharing. The general
structure is described in Section 3.1.1. In the context of a Black-Scholes asset model and for
deterministic liabilities, the inf-convolutions and capital requirements are explicitly computed for
three important examples: average value at risk and the two V@R-type risk measures value at
risk and range value at risk. More sophisticated models are then analyzed on the basis of Monte
Carlo case studies. Section 3.2 describes how distributions and parameters are chosen, and how
we calibrate value at risk, average value at risk and range value at risk in order to allow for a
meaningful comparison of these risk measures. In Section 3.3, we analyze three case studies of
different complexity: a) Assets are modeled by a Black-Scholes market, liabilities are determin-
istic. b) Liabilities may be random; different types of dependence between assets and liabilities
are investigated. c) An additional left-tailed asset is available. We find that corporate networks
may largely hide downside risk, if capital requirements are computed on the basis of V@R-type
risk measures. For large networks, optimal asset-liability management is often contrary to those
strategies that are desirable from a regulatory point of view. The results are quite striking, and
thus we discuss this issue in detail.

Literature. Risk sharing constitutes a main principle in actuarial risk theory and has been
studied in a wide variety of settings, starting with the pioneering work of Borch (1962), see, e. g.,
also Wilson (1968) and Raviv (1979) for seminal contributions. The general problem of optimal
risk sharing is still an ongoing field of research.

Barrieu & El Karoui (2005) and Barrieu & El Karoui (2008) introduced the inf-convolution in
order to formulate the risk sharing problem among agents with convex risk measures. They show
that the inf-convolution of two convex risk measures is again a convex risk measure. The optimal
structure of the minimization problem is explicitly derived when agents have dilated risk measures,
i. e., ργ(Z) = 1

γ ρ (γZ). Jouini, Schachermayer & Touzi (2008) show that for distribution-based,
also called law-invariant, concave monetary utility functions the set of Pareto optimal comonotone
allocations is non-empty. Acciaio (2007) considers monetary functionals that are not necessarily
monotone and characterizes optimal solutions and their existence. The paper introduces best
monotone approximations of non-monotone functionals where the resulting optimization corre-
sponds to the inf-convolution with constraint

∑n
i=1 Zi ≤ Z defined by Filipovic & Kupper (2008)

and Filipovic & Svindland (2008). Explicit calculations of optimal risk sharing rules for particular
cases are given. Further risk sharing strategies for special cases of two or three agents can be found
in Acciaio (2005). The case of distribution-based and cash-invariant convex functions that are not
necessarily monotone is also considered by Filipovic & Svindland (2008); the authors prove that
the capital and risk allocation problem always admits a solution via contracts whose payoffs are
defined as increasing Lipschitz-continuous functions of the total risk. Ludkovski & Young (2009)
study optimal risk sharing among n agents endowed with convex distortion risk measures and
determine Pareto optimal allocations. For convex distortion risk measures all Pareto optimal re-
distributions between firms and competitive equilibria are characterized by Boonen (2015) in the
context of finite scenario spaces.

In contrast to most results in the literature, in the current paper we consider risk measures that
are not necessarily convex. This direction is also taken by the following papers: Risk sharing for
V@R is considered in Galchion (2010). For V@R and AV@R, Asimit, Badescu & Tsanakas (2013)
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derive optimal risk transfers within insurance groups that minimize the risk adjusted value of the
group liabilities when valuation takes place under a cost-of-capital methodology. Embrechts, Liu
& Wang (2018) solve the optimal risk sharing problem for value at risk and range value at risk
and state robustness results for optimal allocations. Weber (2018) solves the risk sharing problem
for general distortion risk measures that are not necessarily convex and applies these results to
corporate networks, for example, to insurance networks. The paper includes a discussion of the
difference of the notions network and group. Weber’s (2018) framework includes the results of
Embrechts et al. (2018) as special cases. We review these results in Section 2.2 – extending them
by a construction of tail allocations in the face of the issue of fairness.

2 Capital Regulation and Network Risk Minimization

2.1 Capital Requirements

Capital requirements are a cornerstone of regulation schemes such as Basel III for banks, Solvency
II for European insurance companies, or the Swiss Solvency Test for insurance companies in
Switzerland. The key idea is that financial firms should hold a buffer for potential losses that
ensures the firm’s financial solvability and thereby serves to protect customers, policy holders
and other counterparties. The computation of such a capital requirement - in the sequel named
solvency capital requirement (SCR) - typically involves two components, stochastic balance sheet
projections capturing the random evolution of the firm’s equity over a given time horizon, and
a monetary risk measure that quantifies the inherent risk on a monetary scale or, equivalently,
specifies acceptability of financial positions, e. g., from the perspective of a financial supervisory
authority, a rating agency, or the board of management.

To formalize the SCR computation in a stylized manner, let us consider an atomless probability
space (Ω,F ,P) and a one period economy with two dates, say t = 0, 1. Time 0 is interpreted as
today, time 1 as the future time horizon of the regulation scheme, e. g., one year in case of Solvency
II. We denote by X the set of financial positions at time 1 whose risk needs to be assessed. By
sign convention negative values correspond to debt or losses. Throughout this paper, X is a vector
space of random variables on (Ω,F ,P) that contains the constants.

Assets and Liabilities. At time t = 0, 1, the economic values of assets and liabilities of a
financial firm according to the solvency balance sheet are denoted by At and Lt, respectively,
and the book value of equity or net asset value (NAV) is then derived as Et = At − Lt. Note
that the quantities A0, L0, E0 at t = 0 are deterministic, while their counterparts A1, L1, E1 at
t = 1 are typically not known in advance, but random. Mathematically, the values of assets and
liabilities A1, L1 and the resulting equity E1 are modeled as real-valued random variables on the
given probability space (Ω,F ,P). In practice, these quantities can be derived from stochastic
balance sheet projections within sophisticated internal models that rely extensively on Monte
Carlo simulations.

Solvency Capital Requirement. Regulatory guidelines typically describe requirements on
the SCR computation verbally, but do not provide an exact and unique SCR definition in mathe-
matical terms. In particular, as illustrated in Example 2.1 below for Solvency II regulation,
regulatory requirements can be contradictory, leaving considerable room for interpretation.

In this paper, we focus on two different SCR definitions:

SCRA(E1) :=ρ(E1 − E0),
SCRmean(E1) :=ρ(E1 − E[E1]),

where ρ denotes a monetary risk measure with acceptance set A such as value at risk (V@R),
average value at risk (AV@R) or range value at risk (RV@R), see Section A for a short review.
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While SCRA(E1) evaluates the risk of the random capital increment E1 − E0 over the given
time horizon (neglecting discounting effects on the one-year horizon), the alternative definition
SCRmean(E1) refers to the firm’s centered equity E1 − E[E1] at time 1. Also note that

SCRA(E1) = E0 + ρ(E1) and SCRmean(E1) = E[E1] + ρ(E1),

due to cash-invariance of the monetary risk measure ρ.
From a conceptional point of view, the definition SCRA corresponds to a regulator’s perspec-

tive, and it is based on the natural requirement that equity E1 at time 1 should be acceptable
with respect to a prescribed monetary risk measure ρ, i. e.,

E1 ∈ A ⇔ ρ(E1) ≤ 0.

For SCRA(E1) = E0+ρ(E1), acceptability of the firm’s equity E1 is equivalent to SCRA(E1) ≤ E0,
i. e., the firm’s equity is sufficient to cover the solvency capital requirement. In practice, however,
it is a common approach to consider only unexpected losses, in particular for market risks and
underwriting risks. This leads to the alternative definition SCRmean.

Example 2.1. For Solvency II regulation, Recital 64 of the Directive 2009/138/EC states that
capital must be sufficient to prevent ruin with probability 99.5% on a one-year time horizon, i. e.,
P[E1 < 0] ≤ α with α = 0.005. This condition is equivalent to E1 ∈ AV@R0.005 , where AV@R0.005

denotes the acceptance set of value at risk defined in (12). Hence, a canonical SCR definition in
the context of Solvency II is

SCRA(E1) := V@R0.005(E1 − E0) = E0 + V@R0.005(E1) = E0 − q+
E1

(0.005),

where q+
E1

denotes the upper quantile function of E1.
Contradicting, §101(2) of the Directive 2009/138/EC prescribes that the SCR “shall cover

only unexpected losses“, and that “it shall correspond to the Value-at-Risk of the basic own
funds of an insurance or reinsurance undertaking subject to a confidence level of 99.5 % over a
one-year period.” This supports the definition in terms of the so-called mean value at risk

SCRmean(E1) := V@R0.005(E1 − E[E1]) = E[E1] + V@R0.005(E1) = E[E1]− q+
E1

(0.005)

which is widely used in practice. Both definitions are consistent to specific regulatory require-
ments, but lead however to different solvency capital requirements.

Financial institutions are typically owned by shareholders with limited liability. The free sur-
plus - given as equity less SCR - can be distributed as dividends to the shareholders. Consequently,
shareholders and the management board are interested in reducing the SCR via appropriate tech-
niques. In the sequel, we focus on this problem from a network’s perspective.

2.2 The Risk Sharing Problem of the Network

2.2.1 Inf-Convolutions

Consider a financial network that consists of n entities that are all individually subject to capital
regulation. We suppose that the solvency capital requirement of entity i = 1, 2, . . . , n is com-
puted based on a monetary risk measure ρi, and we write SCRi

A and SCRi
mean, respectively, to

differentiate between the two different SCR definitions for entity i.
The network’s balance sheet is obtained by consolidating the individual balance sheets of its

sub-entities. Denoting from now on by At and Lt the total consolidated assets and liabilities at
times t = 0, 1, the network’s total equity is given by Et = At−Lt, t = 0, 1. The corporate network
now uses at time t = 0 legally binding transfer agreements to modify the equities at time t = 1.
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The resulting new allocation is denoted by
(
Ei
)
i=1,...,n, where

∑n
i=1E

i
1 = E1 and

∑n
i=1E

i
0 = E0.

In this situation, the total SCR of the network is given by
n∑
i=1

SCRi
A(Ei1) = E0 +

n∑
i=1

ρi(Ei1) and
n∑
i=1

SCRi
mean(Ei1) = E[E1] +

n∑
i=1

ρi(Ei1), respectively.

This definition relies on the assumption that the firm’s individual SCRs are added up to obtain
the network’s SCR. In particular, this means that the network’s SCR is not computed based on
a consolidated solvency balance sheet.

For both SCR definitions, the minimization of the network’s SCR is equivalent to the mini-
mization of

∑n
i=1 ρ

i
(
Ei1
)
. In other words, for a fixed number of n firms the problem of the network

consists in the design of optimal transfers that minimize
∑n
i=1 ρ

i
(
Ei1
)
. We thus face the optimal

risk sharing problem

2ni=1ρ
i(E1) = inf

{
n∑
i=1

ρi
(
Ei1

) ∣∣∣∣ n∑
i=1

Ei1 = E1, E
1
1 , . . . , E

n
1 ∈ X

}
, (1)

also known as inf-convolution. Let us write

2ni=1SCRi
A(E1) = E0 + 2ni=1ρ

i(E1) and 2ni=1SCRi
mean(E1) = E[E1] + 2ni=1ρ

i(E1) (2)

for the corresponding solvency capital requirements.

Remark 2.2. Let ρ be a coherent risk measure and assume that ρi = ρ for any firm i = 1, . . . , n,
n ∈ N. In this case, optimal risk sharing and splitting the risk within the network to more firms
do not reduce the total network’s risk, i. e.,

2ni=1ρ(E1) = ρ(E1) for all n ∈ N.

Indeed, for all decompositions E1 = E1
1 + . . .+ En1 , subadditivity yields

ρ(E1) = ρ

(
n∑
i=1

Ei1

)
≤

n∑
i=1

ρ(Ei1),

and this lower bound is attained for Ei1 = αiE1, i = 1, . . . , n, with α1 + . . .+αn = 1. In particular,
it is optimal to allocate the total net asset value to one entity, e. g., the holding company.

2.2.2 Risk Sharing with Distortion Risk Measures

In the context of distortion risk measures, problem (1) is discussed in Weber (2018). The risk
measures V@R, AV@R and RV@R belong to this class of risk measures. Theorem 2.4 in Weber
(2018) provides an upper bound to the solution and an allocation that attains this bound. The
results characterize under which conditions the bound is attained and generalize the work of
Embrechts et al. (2018).

Definition 2.3. An increasing function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1 is called a
distortion function. If P is a probability measure on (Ω,F), then

cg(A) := g(P[A]), A ∈ F ,

defines a capacity. The risk measure

ρg(X) :=
∫

(−X)dcg,

defined as the Choquet integral with respect to cg, is called distortion risk measure.
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As special cases, Weber (2018) introduces the class of V@R-type distortion risk measures.
Definition 2.4. Consider the class of distortion functions g such that

g(x) = 0, ∀x ∈ [0, α]
g(x) > 0, ∀x ∈ (α, 1]

for some α ∈ [0, 1). The number α is called the parameter of g, and

ĝ(x) =
{
g(x+ α), 0 ≤ x ≤ 1− α
1, 1− α < x

is the active part of g. If the parameter α > 0, then ρg is called a V@R-type distortion risk
measure.

For V@R-type risk measures, the alternative representation ρg(X) =
∫

[0,1] V@Rλ(X) g(dλ) of
distortion risk measures as mixtures of value at risk takes the form

ρg(X) =
∫

[α,1]
V@Rλ(X) g(dλ),

i. e., a risk measure of V@R-type does not depend on any properties of the tail of X beyond its
V@R at level α. The risk measures V@R and RV@R are of V@R-type, AV@R is not. This is
shown in Table 1.

Risk Measure V@Rα AV@Rβ RV@Rα,β

g(x) =
{

0, 0 ≤ x ≤ α
1, α < x

{
x
β , 0 ≤ x ≤ β
1, β < x


0, 0 ≤ x ≤ α
x−α
β , α < x ≤ α+ β

1, α+ β < x

Type V@R-type Not V@R-type V@R-type

Table 1: Distortion functions for the risk measures V@R, AV@R and RV@R for α, β > 0 with α+ β ≤ 1.

The solution to the optimal risk sharing problem (1) minimizes the network’s total risk. The
minimizer is an allocation

(
Ei
)
i=1,...,n with

∑n
i=1E

i
1 = E1 and

∑n
i=1E

i
0 = E0. The next paragraph

describes – as a self-contained presentation – the structure of the solution derived in Weber (2018),
Theorem 2.4. It provides a translation of the results, formulated in Weber (2018) in terms of losses
L, to financial positions X = −L and prepares the subsequent discussion of the new results on
tail allocation.

Basis Results on Optimal Risk Sharing. Let E1 ∈ L∞ and n ∈ N. By g1, g2, . . . , gn we
denote left-continuous distortion functions with parameters α1, α2, . . . , αn ∈ [0, 1) and define
d =

∑n
i=1 αi. We set ρi = ρgi , i. e., ρi is the distortion risk measure associated with the distortion

function gi, i = 1, 2, . . . , n. Define the left-continuous functions

f = min
{
ĝ1, ĝ2, . . . , ĝn

}
, g(x) =

{
0, 0 ≤ x ≤ d ∧ 1,
f(x− d), d ∧ 1 < x ≤ 1

Note that g ≡ 0, if d ≥ 1. In particular, g is not necessarily a distortion function with g(1) = 1.
We set V@Rλ := V@R1 = − ess sup for λ ≥ 1.

1. There exist E1
1 , E

2
1 , . . . , E

n
1 ∈ L∞ such that

∑n
i=1E

i
1 = E1 and

n∑
i=1

ρi(Ei1) =
∫

[0,1]
V@Rλ(E1)g(dλ) + (g(1)− 1) ess supE1.

If d ≥ 1, this equation can be simplified and we obtain
n∑
i=1

ρi(Ei1) = − ess supE1.
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2. The allocation (Ei1)i=1,2,...,n can be constructed as follows. Let

Y := E1 − ess supE1 ≤ 0.

There exists a random variable U , uniformly distributed on [0, 1], such that Y = −V@RU (Y ).
For i = 1, 2, . . . , n, we set

ri(λ) =
{

1, i = inf{j : ĝj(1− λ) = f(1− λ)},
0, else,

(λ ∈ [0, 1]) and Ri(y) = −
∫ |y|

0 ri(λ)dλ. We define Ỹ = Y · 1{U≥d} and Ẽi1 = Ri(Ỹ ). For
i = 1, 2, . . . , n, we set

Ei1 = Y · 1{∑i−1
l=1 αl ≤ U <

∑i

l=1 αl
} + Ẽi1 + ess supE1

n
(3)

If d ≥ 1, this equation can be simplified and we obtain

Ei1 = Y · 1{∑i−1
l=1 αl ≤ U <

∑i

l=1 αl
} + ess supE1

n

These results can be generalized to unbounded random variables, see Weber (2018).

Tail Allocation. The preceding paragraph characterizes a particular solution to (1), but for
V@R-based risk measures multiple solutions are admissible. V@R-based risk measures ignore
the extreme tail. This implies that the tail part of the distribution of E1 that is hidden via risk
sharing can be allocated to different entities in various ways. While V@R-based risk measurements
remain invariant under these re-allocations of the tail, other quantities that are important from
the perspective of the single entities may change, e. g., the profit of the individual firms in the
network. In contrast to Embrechts et al. (2018) and Weber (2018), we construct alternative tail
allocations; these do also minimize the network’s total risk, but may provide fairer allocations of
the extreme downside risk from the perspective of the single firms.

Remark 2.5. In Eq. (3), the terms

Y · 1{∑i−1
l=1 αl ≤ U <

∑i

l=1 αl
} (4)

refer to a particular example of an allocation of the extreme downside of Y resp. E1 to the different
entities. This part of the distribution becomes invisible in the risk measurement

∑n
i=1 ρ

i(Ei1): It
is swept under the carpet! An allocation according to (4) does, however, not symmetrically share
extreme downside among entities. More generally, the terms (4) can be replaced by

Ěi1 := Y · si(U) (5)

for càdlàg functions si : [0, d] → {0, 1},
∫ d

0 si(u)du = αi, i = 1, 2, . . . , n, with
∑n
i=1 si ≡ 1. With

this modification, an alternative solution to problem (1) is

Ei1 = Ěi1 + Ẽi1 + c

n
(6)

where c := ess supE1.
Let us study the extreme downside risk in more detail. For simplicity, we assume that Y has a

continuous distribution. Since Y = −V@RU (Y ), the random variables Y and U are comonotone.
Extreme downside risk up to probability d corresponds to the event:

C := {E1 < −V@Rd(E1)} = {Y < −V@Rd(Y )} = {U < d}.

7



Setting yd := −V@Rd(Y ), the allocation (6) can be characterized more specifically by

Ei1 =
{

Ěi1 + c
n < yd + c

n on C
Ẽi1 + c

n ≥ yd + c
n on Cc

with P[Ei1 < yd+ c
n ] = αi, i = 1, 2, . . . , n. Setting Ci := {Ei1 < yd+ c

n}, i = 1, 2, . . . , n, (Ci)i=1,2,...,n
defines a partition of C, and Ci corresponds to the set of scenarios in which the downside risk is
allocated to entity i. Fairness of an allocation of the downside risk can be interpreted in terms
of the probabilities P[Ci] = αi and in terms of the conditional distribution of the severity of
losses, i. e., µi(·) := P[Ei1 ∈ ·|Ci]. This probability measure, µi, is equal to the distribution of
−V@RU i(Y ) + c/n for a random variable U i with distribution function

F i(x) =


0 if x < 0
1
αi

∫ x
0 si(u)du if 0 ≤ x < d

1 if x ≥ d

Let us assume that (αi)i=1,2,...,n are fixed. We consider the issue of fairness in terms of the con-
ditional distributions of the severity of losses. To be precise, we provide a sequence of allocations
of the extreme downside as specified in (5) such that the conditional distributions of the severity
of losses are asymptotically equal. In this sense, the sequence of allocations becomes “fair in the
limit”. An example is the sequence

smi =
{

1, k
m · d+

∑i−1
l=1 αl
m ≤ x < k

m · d+
∑i

l=1 αl
m for some k = 0, 1, . . . ,m− 1,

0, else.

Denoting the corresponding conditional severity distributions by µi,m, i = 1, 2, . . . , n, m ∈ N, the
sequence (µi,m)m∈N converges weakly as m → ∞ to a probability measure µ∞, for each i. The
measure µ∞ does not depend on i and equals the distribution of −V@RU∞(Y )+c/n for a random
variable U∞ with distribution function

F∞(x) =


0 if x < 0
x
d if 0 ≤ x < d
1 if x ≥ d

Special Cases. For the particular distortion risk measures V@R, AV@R and RV@R, we recover
the results in Embrechts et al. (2018), Theorem 2.

Example 2.6. For any E1 ∈ X and α1, . . . , αn, β1, . . . , βn ≥ 0, n ∈ N, we have

(a) 2ni=1V@Rαi(E1) = V@R∑n

i=1 αi
(E1),

(b) 2ni=1AV@Rβi(E1) = AV@Rmax{β1,...,βn}(E1),

(c) 2ni=1RV@Rαi,βi(E1) = RV@R∑n

i=1 αi,max{β1,...,βn}(E1).

Note that the optimal risk sharing problem (1) can be combined with other management
actions. For example, the network may adjust its structure by increasing the number of firms
over longer time horizons, or the network may optimize its asset allocation to further reduce its
total risk and its total SCR (cf. Section 3). In particular, Weber (2018) shows that for V@R-type
risk measures and sufficiently large n, the corporate network can find a capital allocation such
that

2ni=1ρ
i(E1) = − ess supE1, (7)

corresponding to the best case scenario. Downside risk can thus completely be hidden within
corporate network structures.

V@R is a special case of a V@R-type distortion risk measure, and hence our observations are
relevant in the context of Solvency II. In contrast, they do not apply to the Swiss Solvency Test
that uses the coherent risk measure AV@R as the basis for capital regulation (cf. Remark 2.2).
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3 An Application to Asset-Liability Management

This section provides numerical case studies on optimal risk sharing. In Section 3.1, we introduce
an asset-liability management (ALM) model for networks. Entities can implement various (static)
asset allocation strategies over a one-year time horizon. Within this framework we analyze three
case studies of different complexity:

1. Assets are modeled by a Black-Scholes market, liabilities are deterministic.

2. Liabilities may be random; different types of dependence between assets and liabilities are
investigated.

3. An additional left-tailed asset is available.

For these cases, we quantify the impact of the number n of sub-entities in the network on the
network’s minimal risk 2ni=1ρ

i (E1) and on the solvency capital requirements 2ni=1SCRi
A (E1)

and 2ni=1SCRi
mean (E1). We demonstrate how asset-liability management can further reduce the

minimal network risk. We focus on three different risk measures: V@R, AV@R and RV@R.

3.1 Asset-Liability Management Model

3.1.1 General Asset-Liability Model

Consider an ALM model with finite time horizon 1. We assume that the network’s firms can
invest in a financial market with a finite number K ≥ 1 of liquidly traded assets. We denote by
Skt the price of one share of asset k = 1, . . . ,K, and by Lt the consolidated liabilities at time
t ∈ [0, 1], respectively. At t = 0 the network decides – in a static manner – how to invest in the
different assets in the period t ∈ [0, 1] by determining an asset allocation strategy δ ∈ RK with

δk ≥ 0 and
K∑
k=1

δk = 1,

where δk denotes the fraction of the total asset amount of the balance sheet invested in asset k.
The corresponding numbers of shares held in the assets k = 1, . . . ,K are given by

ηk(δ) = δk · E0 + L0
Sk0

,

where E0 is the net asset value – or book value of equity – at time 0. Afterwards the net asset
value, calculated as the difference of total assets and liabilities, is a function of the asset allocation
strategy and takes the form

Et(δ) =
K∑
k=1

ηk(δ)Skt − Lt, t ∈ [0, 1].

As a consequence, both risk ρ(E1(δ)) and return E1(δ)/E0 − 1 depend on the strategy δ.

3.1.2 Basis Asset-Liability Model

As a simple reference model we consider a Black-Scholes market and a single deterministic liability.

Asset Model. The financial market model consists of two liquidly tradable primary products:
one riskless asset (savings account) and one risky asset (stock). Their price processes (S1

t )t∈[0,1],
(S2
t )t∈[0,1] are defined on a filtered probability space (Ω,F ,F = (Ft)t∈[0,1],P) and follow the

classical Black-Scholes model, i. e.,
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• Savings account: S1
t = exp(rt), t ∈ [0, 1], with interest rate r,

• Stock: S2
t = S2

0 exp(σWt + (µ− 1
2σ

2)t), t ∈ [0, 1], with S2
0 ∈ (0,∞), µ ∈ R, σ ∈ (0,∞),

where (Wt)t∈[0,1] denotes a one-dimensional Wiener process. Note that E[S2
t ] = S2

0 exp(µt). For
the remaining part of the paper, we assume that the risk-free interest rate r equals zero, i. e.,
S1
t = 1, t ∈ [0, 1].

Liability Model. We assume that the insurance network sells a pure endowment with maturity
1 only. The network’s premium income in t = 0 is denoted by π. The liabilities are deterministic,
and the actuarial interest rate is assumed to be zero. Consequently, the actuarial reserve is a
constant, i. e., Lt = π, t ∈ [0, 1].

In this basis setting, the net asset value is given by

Et(δ) = η1(δ)S1
t + η2(δ)S2

t − Lt = η1(δ) + η2(δ)S2
t − π (t ∈ [0, 1])

for any asset allocation δ ∈ R2, δ2 ≥ 0, δ1 = 1−δ2 ≥ 0. Randomness is driven only by the terminal
stock value S2

1 . This allows us to derive the minimal risk capital

2ni=1ρ
i (E1(δ))

for the three risk measures V@R, AV@R and RV@R in closed form.

Corollary 3.1. Let ρi = RV@Rαi,βi, αi, βi ≥ 0, be the risk measure of network’s entity i,
i = 1, . . . , n, and define α = α1 + . . . + αn, β = max{β1, . . . , βn}. Let δ ∈ R2 be a fixed asset
allocation strategy of the network. If α+ β ≤ 1, then optimal risk sharing yields

2ni=1RV@Rαi,βi(E1(δ)) = RV@Rα,β(E1(δ))

= −η2(δ)S2
0e
µ 1
β

(
Φ(Φ−1(α+ β)− σ)− Φ(Φ−1(α)− σ)

)
− η1(δ) + π,

where Φ denotes the cumulative distribution function of the standard normal distribution. In
particular, the minimal SCRs take the form

2ni=1SCRi
A(E1(δ)) = η2(δ)S2

0

(
1− eµ 1

β

(
Φ(Φ−1(α+ β)− σ)− Φ(Φ−1(α)− σ)

))
,

2ni=1SCRi
mean(E1(δ)) = η2(δ)S2

0

(
eµ − eµ 1

β

(
Φ(Φ−1(α+ β)− σ)− Φ(Φ−1(α)− σ)

))
.

Proof. The proof is given in Section B.

As a byproduct, Corollary 3.1 provides the corresponding results for V@R and AV@R.

Corollary 3.2. Let δ ∈ R2 be the network’s asset allocation strategy.

i) Let ρi be given by V@Rαi, αi ∈ (0, 1), i = 1, . . . , n, and set α = α1 + . . . + αn. If α ≤ 1,
then

2ni=1V@Rαi(E1(δ)) = −η2(δ)S2
0e
µ exp

(
Φ−1(α)σ − σ2

2

)
− η1(δ) + π.

Moreover,

2ni=1SCRi
A(E1(δ)) = η2(δ)S2

0

(
1− eµ exp

(
Φ−1(α)σ − σ2

2

))
,

2ni=1SCRi
mean(E1(δ)) = η2(δ)S2

0

(
eµ − eµ exp

(
Φ−1(α)σ − σ2

2

))
.
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ii) Let ρi be given by AV@Rβi, βi ∈ (0, 1), i = 1, . . . , n, and define β = max{β1, . . . , βn}. If
β ≤ 1, then

2ni=1AV@Rβi(E1(δ)) = −η2(δ)S2
0e
µ 1
βΦ(Φ−1(β)− σ)− η1(δ) + π.

In particular, we have

2ni=1SCRi
A(E1(δ)) = η2(δ)S2

0

(
1− eµ 1

βΦ(Φ−1(β)− σ)
)
,

2ni=1SCRi
mean(E1(δ)) = η2(δ)S2

0

(
eµ − eµ 1

βΦ(Φ−1(β)− σ)
)
.

Proof. The proof is given in Section B.

3.2 Parameterization

Let us now summarize our standing assumptions on the parameterization.

Remark 3.3. For V@R-type risk measures and for sufficiently many sub-entities, the network
can reduce its total risk substantially, as described in Eq. (7). If the best case is unbounded,
total risk will be equal to −∞. Our case studies below rely on simulation methods with a finite
number of samples. In all numerical experiments we run 500, 000 simulations. If the best case is
unbounded, the sampled best case will always be a finite number, and it will thus not be possible
to reproduce Eq. (7). For this reason, we modify all distributions in the extreme tails such that
they will be of bounded support. This enables a simulation-based analysis of Eq. (7) and related
results in our case studies. To be more precise, asset distributions are modified by setting asset
values above the 99.95%-quantile to the 99.95%-quantile.

Analogously, we also modify liability distributions by setting liability values above the 99.95%-
quantile to the 99.95%-quantile, and below the 0.05%-quantile to the 0.05%-quantile when extend-
ing the basis Asset-Liability model in Section 3.1.2 to cover also random liabilities and different
dependence structures. This procedure will be applied to a liability distribution in Section 3.3.2
despite the fact that its support is bounded. This is done in order to avoid settings that require
more sophisticated rare event simulation. The resulting, simplified model is well suited to numeri-
cally illustrate the effect of network size and ALM-strategies on risk. Alternative models in which
extreme tail events possess a large influence on the outcome of simulations require more care in
terms of simulation techniques for rare events. This is, however, not the focus of our paper. We
thus concentrate on the described setting.

Details of the considered distributions are discussed below: The lognormal distribution refers
to the asset side, i. e., a stock price, and is introduced in the next paragraph; the beta distribution
captures random mortality, see Eq. (10); the stable distribution is introduced in Section 3.3.3 and
models an additional asset with large downside risk. The relevant quantile values are provided in
Table 2.

Lognormal distr. Beta distr. Stable distr.

0.9995-quantile 66.2512 0.9718 3.2209

0.0005-quantile not relevant 0.7775 not relevant

Table 2: Adjustment of distributions.

Parameterization of the Basis Model. For the asset side, we assume that the initial
stock price is given by S2

0 = 30 and that the stock price dynamics is determined by the drift
µ = ln (35/30) ≈ 0.1542 (i. e., E[S2

1 ] = 35) and the volatility σ = 0.2. As discussed in Remark 3.3,
we bound the asset value by its 99.95%-quantile which equals 66.2512, see Table 2, by modifying
its distribution as explained. Interest rates of the savings account are assumed to be zero. On
the liability side, we assume that the network’s premium income in t = 0 is π = 90. Since the
liabilities are deterministic, this implies L0 = L1 = π = 90.
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The initial equity value is set to E0 = 30. In this case, the total asset amount of the balance
sheet is given by E0 + L0 = 120. The network’s asset allocation δ ∈ R2 is assumed to be fixed
and set to δ1 = 0.75 and δ2 = 0.25, i. e., we obtain the corresponding numbers of shares

η1(δ) = 90, η2(δ) = 1.

Note that this asset allocation yields the terminal equity

E1(δ) = η1(δ) + η2(δ)S2
1 − π = S2

1

proportional to the stock value. In particular, for the given positive drift µ, we have

E[E1(δ)] = E[S2
1 ] = S2

0 exp(µ) > S2
0 = E0,

i. e.,
SCRA(E1(δ)) = E0 + ρ(E1(δ)) < E[E1(δ)] + ρ(E1(δ)) = SCRmean(E1(δ))

for any monetary risk measure ρ.

Parameterization of Risk Measures. Our case studies compare and analyze the effect of
optimal risk sharing for three different risk measures: V@R, AV@R and RV@R. We assume that
within the network all firms use the same risk measure with the same parameters, i. e.,

(a) ρi = V@Rα, α ∈ (0, 1), for all i = 1, . . . , n,

(b) ρi = AV@Rβ, β ∈ (0, 1), for all i = 1, . . . , n,

(c) ρi = RV@Rγ,ε, γ, ε ∈ (0, 1), for all i = 1, . . . , n.

This situation might result from a management decision to apply a unified risk measurement
approach within the network, or it could be enforced by regulatory requirements if all firms are
subject to the same regulation scheme.

For value at risk, we choose the level α = 0.1, and we fix γ = 0.05 for the range value at risk.
To ensure comparability of results between the three risk measures, the remaining parameters β, ε
are calibrated such that for X ∼ N (0, 1) with cumulative distribution function Φ and probability
density function ϕ

V@Rα(X) = AV@Rβ(X) = RV@Rγ,ε(X). (8)
For this purpose, we use that V@Rα(X) = −q+

X(α) = −Φ−1(α),

AV@Rβ(X) = 1
β

∫ β

0
V@Rα(X) dα = − 1

β

∫ β

0
Φ−1(α) dα

= − 1
β

∫ Φ−1(β)

−∞
yϕ(y) dy = − 1

βϕ(Φ−1(β)),

due to the substitution y = Φ−1(α) and ϕ′(y) = yϕ(y), and

RV@Rγ,ε(X) = 1
ε

∫ γ+ε

γ
V@Rα(X) dα = −1

ε

∫ γ+ε

γ
Φ−1(α) dα = −1

ε

(
ϕ(Φ−1(γ + ε))− ϕ(Φ−1(γ))

)
.

Solving Eq. (8) with these formulae for given α and γ numerically yields the following parameters:

V@Rα AV@Rβ RV@Rγ,ε
α = 0.1 β = 0.2456 γ = 0.05, ε = 0.1072

Table 3: Parameterization of risk measures.

Remark 3.4. Observe that the chosen quantile levels in Remark 3.3 and Table 2 are in the
extreme tail of the distributions, if compared to the parameters of the risk measures in Table 3.
Consequently, also within our modified model with adjusted distributions the chosen risk measures
are non-trivial functionals of the tails.
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3.3 Numerical Case Studies

3.3.1 Unsophisticated Network vs. Sophisticated Network

Let us first consider the basis ALM model with deterministic liabilities. The first row in Tables
4–6 displays the risk capital ρ(E1(δ)) and the corresponding SCRs for V@R, AV@R and RV@R
of a single firm. This corresponds to the consolidated case and can be interpreted as an unso-
phisticated network. All values are almost equal across different risk measures due to the applied
standardization of the risk levels α, β, γ, ε, although E1(δ) follows a lognormal distribution instead
of a standard normal distribution.

Sophisticated networks may, firstly, adjust their structure by increasing the number of entities
n. For a fixed number n of firms, the corporate network will, secondly, design optimal intra-
network capital transfers that minimize the total risk in Eq. (1). The second and the third row
in Tables 4–6 quantify the effect on risk capital and on the corresponding SCRs for n = 5 and
n = 10 firms:

• For the two risk measures of V@R-type, V@R and RV@R, we observe that downside risk can
be reduced significantly by optimal capital transfers that hide the tail risk. For n sufficiently
large, the corporate network could even determine a capital allocation such that

2ni=1ρ
i(E1(δ)) = − ess supE1(δ),

corresponding to the best case scenario. This requires n · α ≥ 1 for the risk measure V@Rα

and n · γ ≥ 1 for RV@Rγ,ε (cf. page 6). For V@Rα with α = 0.1, this condition is already
satisfied for a number of firms n ≥ 10, and the simulations provide the expected result.

• In contrast, for the coherent risk measure AV@R, optimal risk sharing does, of course, not
reduce the risk capital – hiding tail risk is not possible.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 34.9982 -26.5577 3.4423 8.4405

n = 5 34.9982 -34.3060 -4.3060 0.6922

n = 10 34.9982 -66.2512 -36.2512 -31.2530

Table 4: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: V@R0.1; deterministic liabilities.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 34.9982 -26.6784 3.3216 8.3198

Table 5: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: AV@R0.2456; deterministic liabilities.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 34.9982 -26.5722 3.4278 8.4260

n = 5 34.9982 -30.9523 -0.9523 4.0459

n = 10 34.9982 -35.2473 -5.2473 -0.2491

Table 6: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: RV@R0.05,0.1072; deterministic liabilities.

3.3.2 Random Liabilities

We extend the basis ALM model by including random liabilities. The insurance network is as-
sumed to sell pure endowment contracts only, i. e., a product depending on the random future
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life time of the insurees. The idiosyncratic risk of individuals becomes irrelevant in a very large
pool, but the systematic risk, random mortality, does not average out. This is the focus of the
case study.

For insured persons aged x, we denote by p∗x and px their one-year actuarial survival proba-
bility and their one-year random survival probability, respectively. We use the assumption that
the actuarial survival probability p∗x is the best estimate of the random survival probability in
the sense that E[px] = p∗x and that p∗x does not yet include any margin for unexpected losses,
i. e., deviations from the expected value. In this case, for a sum insured L > 0, the premium is
calculated as π = L · p∗x, and the random liabilities at time t = 1 are given by

L1 = L · px = px
p∗x
π.

The last term corresponds to the actuarial reserve adapted to mortality by an appropriate mul-
tiplier, the ratio of random and actuarial survival probability.

For zero interest rates, the network’s random equity at time t = 1 is then given by

E1(δ) = η1(δ) + η2(δ)S2
1 − L1 = η1(δ) + η2(δ)S2

1 −
px
p∗x
π. (9)

The extended model (9) reduces to the basis ALM model if px ≡ p∗x is deterministic. For a
monetary risk measure ρ, the risk

ρ (E1(δ)) = ρ

(
η2(δ)S2

1 −
px
p∗x
π

)
− η1(δ)

accounts for both the network’s asset risk and biometric risk, i. e., the longevity of policyholders.
We analyze the network’s optimal risk sharing strategy for four different dependence struc-

tures of assets (stock) and liabilities: independence, comonotonicity, countermonotonicity, and a
dependency modeled by a Gaussian copula with correlation parameter 0.25. These dependencies
are illustrated in Figure 1. We do not claim that pure comonotonicity and countermonotonicity
are realistic, but study them to illustrate the implications of particularly extreme forms of de-
pendence. The case of the Gaussian copula corresponds to the specifications of the Solvency II
Standard Formula which prescribes - implicitly embedded into a multivariate Gaussian setting -
a linear correlation of 0.25 between market risk and underwriting risk life for risk aggregation by
square-root-formula, cf. European Commission (2009), Annex IV.

(a) (b) (c) (d)

Figure 1: Dependence structures: The stock value and the survival probability are (a) independent, (b) comonotonic, (c) coun-
termonotonic, and (d) follow a Gaussian copula with correlation 0.25.

Independent assets and liabilities do not affect each other. In the comonotonic case, asset and
liability values change in the same direction. In particular, increasing liabilities are associated
with increasing asset values such that increasing costs for the insurer are hedged by gains in the
financial market. In contrast, countermonotonic assets and liabilities correspond to a scenario in
which increasing liability values are associated with decreasing asset values. The first situation
could, for example, correspond to a scenario of joint technical and medical innovation with both
increased wealth and longevity. The second situation could be associated with medical innova-
tion and longevity coupled with an aging population that liquidates assets to generate liquidity.
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Countermonotonic assets and liabilities are problematic, since high insurance claims occur to-
gether with low asset values and yield a low book value of equity of insurers. In the worst case,
the liabilities might not be covered by the asset value anymore. The Gaussian copula with cor-
relation 0.25 basically corresponds to a minor positive linear dependency between the asset and
liability side. In this respect, this case interpolates between independence and comonotonicity.

For the numerical results, we rely on the parameterization of Section 3.2. In addition, we
assume a sum insured L = 100, p∗x = 0.9 and

px ∼ Beta(90, 10). (10)

Then, E[px] = p∗x = 0.9, and hence E[L1] = π = L0. As described in Remark 3.3, we modify this
distribution in the tails. The relevant quantiles are shown in Table 2. For the sake of comparison
to the basis case in Section 3.3.1, we calibrate the asset allocation δ1, δ2 with δ1 + δ2 = 1 such
that for a network with a single firm only and for independent assets and liabilities V@Rα(E1(δ))
coincides with the basis ALM model. This yields

δ1 = 0.8382, δ2 = 0.1618,

i. e., the fraction δ1 in the savings account is now higher. This is not surprising since random
mortality increases risk which needs to be offset by a reduction of the stock investment. As a
consequence, the return decreases as well; the expected value of the future net asset value is:

E[E1(δ)] = (E0 + L0)
(
δ1E

[
S1

1
S1

0

]
+ δ2E

[
S2

1
S2

0

])
− E[L1] = (E0 + L0)

(
δ1 + δ2 exp(µ)

)
− π.

The following tables summarize the numerical results.

Case Study I - Independent Stock and Liabilities.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2400 -26.5578 3.4422 6.6822

n = 5 33.2400 -32.8451 -2.8451 0.3949

n = 10 33.2400 -65.7126 -35.7126 -32.4726

Table 7: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: V@R0.1; independent assets and liabilities.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 33.2400 -26.6353 3.3647 6.6047

Table 8: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: AV@R0.2456; independent assets and liabilities.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2400 -26.5684 3.4316 6.6715

n = 5 33.2400 -30.1805 -0.1805 3.0595

n = 10 33.2400 -33.5769 -3.5769 -0.3370

Table 9: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: RV@R0.05,0.1072; independent assets and liabilities.
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Case Study II - Comonotonic Stock and Liabilities.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2343 -31.7546 -1.7546 1.4797

n = 5 33.2343 -32.5588 -2.5588 0.6755

n = 10 33.2343 -46.2791 -16.2791 -13.0448

Table 10: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: V@R0.1; comonotonic assets and liabilities.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 33.2343 -31.7879 -1.7879 1.4464

Table 11: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: AV@R0.2456; comonotonic assets and liabilities.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2343 -31.7601 -1.7601 1.4742

n = 5 33.2343 -32.0290 -2.0290 1.2053

n = 10 33.2343 -32.7668 -2.7668 0.4675

Table 12: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: RV@R0.05,0.1072; comonotonic assets and liabilities.

Case Study III - Countermonotonic Stock and Liabilities.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2365 -24.1537 5.8463 9.0828

n = 5 33.2365 -32.5189 -2.5189 0.7177

n = 10 33.2365 -65.7126 -35.7126 -32.4760

Table 13: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: V@R0.1; countermonotonic assets and liabilities.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 33.2365 -24.3001 5.6999 8.9365

Table 14: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: AV@R0.2456; countermonotonic assets and liabilities.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2365 -24.1789 5.8211 9.0577

n = 5 33.2365 -28.8983 1.1017 4.3382

n = 10 33.2365 -33.5348 -3.5348 -0.2982

Table 15: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: RV@R0.05,0.1072; countermonotonic assets and liabilities.
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Case Study IV - Gaussian Copula with Correlation 0.25.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2289 -27.3255 2.6745 5.9034

n = 5 33.2289 -32.9015 -2.9015 0.3274

n = 10 33.2289 -64.0618 -34.0618 -30.8328

Table 16: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: V@R0.1; Gaussian copula with correlation 0.25.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 33.2289 -27.3935 2.6065 5.8355

Table 17: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: AV@R0.2456; Gaussian copula with correlation 0.25.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2289 -27.3377 2.6623 5.8912

n = 5 33.2289 -30.5547 -0.5547 2.6743

n = 10 33.2289 -33.5492 -3.5492 -0.3203

Table 18: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: RV@R0.05,0.1072; Gaussian copula with correlation 0.25.

In the consolidated case – corresponding to an unsophisticated network consisting of a single
firm only – and for all three risk measures V@R, AV@R and RV@R, the associated risk capital
ρ(E1(δ)) reflects the different dependence structures in the following sense: The highest risk capital
is attained for the countermonotonic case, the lowest risk capital is observed for the comonotonic
case, while the risk capital for independent assets and liabilities is between the values of the two
extreme dependency structures. A Gaussian copula with correlation 0.25 – corresponding to the
standard model in Solvency II – is very close to the independent case.

In analogy to Section 3.3.1, the numerical results illustrate for all four dependence structures
that optimal capital transfers within a sophisticated network hide the downside risk, if capital
regulation is based on V@R-type risk measures such as V@R and RV@R. In contrast, there is no
reduction of risk capital by optimal risk sharing for the coherent risk measure AV@R.

For V@R-type risk measures, the different levels of risk capital for the countermonotonic and
independent case disappear for increasing n. The difference of the inf-convolutions
2ni=1V@Ri

α (E1(δ)) in the countermonotonic and the independent case decreases from 2.4 for
n = 1 to 0.3 for n = 5 and finally to 0 for n = 10. Similarly, the difference of the inf-convolutions
2ni=1RV@Ri

γ,ε (E1(δ)) in the countermonotonic and the independent case decreases from 2.4 for
n = 1 to 1.3 for n = 5 and finally to nearly 0 for n = 10. Observe that 210

i=1V@Ri
α (E1(δ)) equals

−65.71 for both the countermonotonic and the independent case, corresponding to the best case
– as known from Eq. (7).

3.3.3 Left-Tailed Asset

In this section, we consider again the basis ALM model with deterministic liabilities as described
in Section 3.1, but extend the financial market by including a third left-tailed, also called left-
skewed, asset with price process (S3

t )t∈[0,1]. This asset is characterized by a skewed distribution
with the possibility of losses and – in comparison to the stock – a higher downside risk. More
precisely, its price process is modeled by

S3
t = S3

0 exp(ζt) + Z − E[Z], t ∈ (0, 1],
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where the initial value S3
0 > 0 is a fixed constant, ζ > 0 is a rate of exponential growth, and Z is

a random variable with stable distribution.
Definition 3.5. A random variable Z has a stable distribution S(a, b, c, d) with parameters
a ∈ (0, 2], b ∈ [−1, 1], c ∈ (0,∞), d ∈ R, i. e., Z ∼ S(a, b, c, d), if its characteristic function is
given by

E
[
eisZ

]
=


exp

(
−cα|s|a

[
1 + ib sign(s) tan πa2

((
c|s|1−a − 1

))]
+ ids

)
, a 6= 1,

exp
(
−c|s|

[
1 + ib sign(s) tan 2

π
(c|s|)

]
+ ids

)
, a = 1.

For the numerical case study, we fix S3
0 = 1, ζ = 0.3 and assume that

Z ∼ S(1.5,−1, 1, 0)

is independent from the stock price process (S2
t )t∈[0,1]. Figure 2 shows the probability density

function of Z. Again, as explained in Remark 3.3, we modify the distribution such that it is
bounded from above. Table 2 shows the new upper bound of 3.22 at the 99.95%-quantile of the
original distribution. Note that E[S3

1/S
3
0 ] ≈ exp(ζ) > exp(µ) ≈ E[S2

1/S
2
0 ] for the parameters

ζ = 0.3 and µ = 0.1542, i. e., the expected return of the left-tailed asset exceeds the expected
return of the stock, compensating for the higher risk of this position.

-15 -10 -5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2: PDF of Z ∼ S(1.5,−1, 1, 0).

For three assets, the book value of equity at terminal time 1 is given by

E1(δ) = η1(δ) + η2(δ)S2
1 + η3(δ)S3

1 − π

= (E0 + L0)
(
δ1 S1

1
S1

0
+ δ2 S2

1
S2

0
+ δ3 S3

1
S3

0

)
− π, δ ∈ R3, δ1, δ2, δ3 ≥ 0, δ1 + δ2 + δ3 = 1,

where η1(δ) and η2(δ) are as before and η3(δ) denotes the number of left-tailed assets bought at
time t = 0. Thus, a higher fraction δ3 yields a higher expected terminal net asset value E[E1(δ)],
but is associated with a higher downside risk.

Case Study I - Fixed Asset Allocation Including a Left-Tailed Asset. Let us first
analyze the impact of the left-tailed asset on network risk minimization for a fixed asset allocation
δ ∈ R3, where a small fraction δ3 = 0.01 is invested in the left-tailed asset. For the sake of
comparison to the basis case in Section 3.3.1, we calibrate the remaining fractions δ1, δ2 with
δ1 + δ2 + δ3 = 1 such that for the consolidated case, i. e., a network with only a single firm,
V@Rα(E1(δ)) coincides with the basis case. This yields the allocation

δ1 = 0.73901, δ2 = 0.2510, δ3 = 0.01.

In analogy to Section 3.3.1, the numerical results in Tables 19, 20 & 21 illustrate that optimal
capital transfers within a sophisticated network hide the downside risk, if capital regulation is
based on V@R-type risk measures such as V@R and RV@R.
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E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 35.4378 -26.5577 3.4423 8.8801

n = 5 35.4378 -35.1833 -5.1833 0.2545

n = 10 35.4378 -71.8246 -41.8246 -36.3867

Table 19: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: V@R0.1; additional left-tailed asset.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 35.4378 -25.4473 4.5527 9.9905

Table 20: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: AV@R0.2456; additional left-tailed asset.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 35.4378 -26.5512 3.4488 8.8866

n = 5 35.4378 -31.5879 -1.5879 3.8499

n = 10 35.4378 -36.1717 -6.1717 -0.7339

Table 21: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10 firms; risk
measure: RV@R0.05,0.1072; additional left-tailed asset.

Case Study II - Optimizing the Asset Allocation. In the second step, we fix the fraction
δ1 = 0.75 invested in the savings account and vary the fraction δ3 held in the left-tailed asset (and
δ2 = 1− δ1 − δ3, respectively) in the range [0, 0.25]. The left boundary point δ3 = 0 corresponds
to the basis ALM model in Section 3.3.1, i. e., there is no investment in the left-tailed asset and
the full remaining fraction δ2 = 0.25 of asset amount of the balance sheet is invested in the stock.
As an anchor point, the first row in Tables 22–24 coincides with the numerical results of the basis
ALM model (cf. Tables 4–6). For the right boundary point δ3 = 0.25, the fraction of 0.25 invested
initially in the stock is completely replaced by the left-tailed asset. For different risk measures
and different numbers of entities we vary the fraction δ3 held in the left-tailed asset. For each of
these cases, an approximately optimal value δ3 that minimizes the total risk measurement within
the considered range can be determined from the tables. Risk sharing is again optimally designed
according to Theorem 2.4 in Weber (2018). cf. page 6.

Table 22 displays the expected terminal net asset value and the risk capital for the consolidated
case, i. e., an unsophisticated network, for varying δ3. A higher fraction δ3 increases the expected
terminal equity E[E1(δ)], thus the expected profit of the network. At the same time, substituting
the stock by the left-tailed asset substantially increases risk capital for all three risk measures
V@R, AV@R and RV@R. The risk measure AV@R is most sensitive to the re-allocation between
stock and left-tailed asset.

Tables 23 & 24 show the relevant quantities for a sophisticated network which splits into
n = 5 or n = 10 entities. Returns increase with δ3, i. e., the fraction in the left-tailed asset, and
are independent of n. However, with increasing n for the two V@R-type risk measures, V@R and
RV@R, required capital decreases substantially. The effect of reduction is stronger for δ3 > 0 than
in the basis ALM model corresponding to δ3 = 0. For δ3 = 0, the difference in 2ni=1V@Ri

α (E1(δ))
for n = 1 and n = 10 is equal to 39.6, but for δ3 = 0.25 equal to 190.9. In the case of RV@R the
corresponding differences are smaller but qualitatively similar, i. e., 8.7 and 93.8, respectively. In
particular, the increase of risk capital for a single firm driven by investments in the left-tailed
asset can completely be compensated within a sophisticated network.
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E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1AV@Riβ (E1(δ)) 2ni=1RV@Riγ,ε (E1(δ))

δ3 = 0 34.9982 -26.6784 -26.6822 -26.5722

δ3 = 0.05 36.0977 -21.6074 -12.7634 -21.2202

δ3 = 0.1 37.1972 -10.8346 7.1190 -10.0190

δ3 = 0.15 38.2967 0.7034 27.6693 1.9167

δ3 = 0.2 39.3962 12.4657 48.4084 14.0584

δ3 = 0.25 40.4958 24.2745 69.2267 26.2904

Table 22: Expected equity and minimized network risk capital for V@R, AV@R and RV@R for a split into n = 1 firms;
additional left-tailed asset.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1AV@Riβ (E1(δ)) 2ni=1RV@Riγ,ε (E1(δ))

δ3 = 0 34.9982 -34.3060 -26.6784 -30.9523

δ3 = 0.05 36.0977 -39.6707 -12.7634 -33.7124

δ3 = 0.1 37.1972 -45.4260 7.1190 -34.6340

δ3 = 0.15 38.2967 -50.9053 27.6693 -34.9642

δ3 = 0.2 39.3962 -56.2971 48.4084 -35.1112

δ3 = 0.25 40.4958 -61.6229 69.2267 -35.1748

Table 23: Expected equity and minimized network risk capital for V@R, AV@R and RV@R for a split into n = 5 firms;
additional left-tailed asset.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1AV@Riβ (E1(δ)) 2ni=1RV@Riγ,ε (E1(δ))

δ3 = 0 34.9982 -66.2512 -26.6784 -35.2473

δ3 = 0.05 36.0977 -86.1500 -12.7634 -41.0915

δ3 = 0.1 37.1972 -106.0488 7.1190 -47.8593

δ3 = 0.15 38.2967 -125.9476 27.6693 -54.4418

δ3 = 0.2 39.3962 -145.8646 48.4084 -60.9784

δ3 = 0.25 40.4958 -166.5765 69.2267 -67.5032

Table 24: Expected equity and minimized network risk capital for V@R, AV@R and RV@R for a split into n = 10 firms;
additional left-tailed asset.

But the numerical results are even more striking. For n = 1 all risk measures indicate that
investments into the left-tailed asset increase risk. The coherent risk measure AV@R is invariant
under an increase of the number of entities. But for n = 5 and n = 10 both V@R-type risk
measures lead to decreasing measurements of total risk if the fraction δ3 invested in the left-
tailed asset is increased. In the case of V@R, total risk 2ni=1V@Ri

α (E1(δ)) increases for n = 1
from −26.7 for δ3 = 0 to 24.3 for δ3 = 0.25, but decreases for n = 5 from −34.3 for δ3 = 0 to
−61.6 for δ3 = 0.25 and for n = 10 from −66.3 for δ3 = 0 to −166.6 for δ3 = 0.25. A similar
phenomenon is observed for RV@R, but less significant. Total risk 2ni=1RV@Ri

γ,ε (E1(δ)) increases
for n = 1 from −26.6 for δ3 = 0 to 26.3 for δ3 = 0.25, but decreases for n = 5 from −31.0 for
δ3 = 0 to −35.2 for δ3 = 0.25 and for n = 10 from −35.2 for δ3 = 0 to −67.5 for δ3 = 0.25. In
particular, investing the maximum amount δ3 = 0.25 into the left-tailed asset yields the highest
expected equity E[E1(δ)] = 40.4958, while optimal risk sharing between n = 5, 10 entities yields
the lowest risk capital with respect to V@R and RV@R.

Figure 3 illustrates the impact of the fraction δ3 invested in the left-tailed asset on E[E1(δ)],
2ni=1ρ

i (E1(δ)), 2ni=1SCRi
A (E1(δ)) and 2ni=1SCRi

mean (E1(δ)) for n = 1, 5, 10 firms.
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Figure 3: E[E1(δ)] in blue, 2ni=1ρ
i (E1(δ)) in red, 2ni=1SCRiA (E1(δ)) in yellow and 2ni=1SCRimean (E1(δ)) in purple.

Optimal risk sharing for V@R-type risk measures suggests that the network’s management
should invest as much as possible in the left-tailed asset and provides incentives for highly risky
investments, i. e. – from a regulatory point of view – for risk mismanagement. In fact, the left-
tailed asset is associated with a significant downside risk, as indicated by the coherent risk measure
AV@R. In contrast to V@R-type risk measures, an asset allocation decision based on this coherent
risk measure would avoid too large investments in the left-tailed asset.

4 Conclusion
Unless a consolidated solvency balance sheet is required, corporate networks may largely hide
their total risk, if downside risk is quantified by risk measures of V@R-type – which includes the
industry’s standard risk measure value at risk. More precisely, a corporate network consisting of
sufficiently many firms can largely reduce its total solvency capital requirement via optimal intra-
network capital transfers and asset-liability management strategies. The size of capital reduction
is increasing in the number n of firms in the network. If n is sufficiently large, the network
can design a capital allocation such that the optimal network risk 2ni=1ρ

i(E1) coincides with
− ess supE1, corresponding to the best case scenario.

This paper illustrates the impact of optimal intra-network capital transfers embedded into a
general asset-liability management model, allowing for different asset allocation strategies, random
liabilities with different dependencies between assets and liabilities, and investments in a left-tailed
asset. The numerical case studies show that V@R-type risk measures provide incentives for risky
investments. In contrast, if risk management is based on the coherent risk measure average value
at risk, downside risk cannot be hidden and misleading incentives are not present.
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A Risk Measures
We denote by X a vector space of measurable, real-valued functions on a measurable space (Ω,F)
that contains the constants. If P is a probability measure on (Ω,F), typical examples of X are
Lp-spaces, p ∈ [1,∞], where P-almost sure equal functions are identified with each other.

A monetary risk measure ρ : X → R is an inverse monotone and cash-invariant function on
X :

1. Inverse Monotonicity: X,Y ∈ X , X ≤ Y ⇒ ρ(X) ≥ ρ(Y )

2. Cash-Invariance: X ∈ X ,m ∈ R ⇒ ρ(X +m) = ρ(X)−m

Property 1 states that the risk of a position Y is smaller than the risk of a position X, if the
future value of Y is at least X. Property 2 states that risk is measured on a monetary scale: If m
Euro are added to X, then the risk of X is exactly reduced by this amount.

In particular, any monetary risk measure corresponds to its acceptance set, A = {X ∈ X :
ρ(X) ≤ 0}, from which it can be recovered via

ρ(X) = inf{m ∈ R : X +m ∈ A}.

Thus, a monetary risk measure can be viewed as a capital requirement: ρ(X) is the minimal
capital that has to be added to the position X to make it acceptable.

The choice of a meaningful risk measure for capital regulation is subject to an ongoing dis-
cussion between academics and practitioners that began in the mid 1990s. Various desirable
properties of monetary risk measures have been proposed, and corresponding classes of risk mea-
sures have been identified and characterized. A common requirement in the literature is that
diversification should not increase risk. In mathematical terms, diversification corresponds to
quasi-convexity of ρ, i. e.,

ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )} (11)

for X,Y ∈ X and λ ∈ (0, 1). In that case, ρ is also a convex functional on X . A monetary risk
measure is called a convex risk measure if it satisfies condition (11) of quasi-convexity and is
hence convex. A convex risk measure is called coherent if it is also positively homogeneous, i. e.,

ρ(λX) = λρ(X)

for X ∈ X and λ ≥ 0. Positive homogeneity is often seen as critical, in particular since the
additional concentration risk caused by scaling the financial position is not captured.

A monetary risk measure on a space of random variables X on (Ω,F ,P) is distribution-
based (sometimes somewhat misleading also called law-invariant), if ρ(X) = ρ(Y ) whenever the
distributions of X and Y under P are equal, i. e., PX = PY for X,Y ∈ X .

Distribution-based risk measures include a wide variety of examples, see, e. g., Föllmer &
Schied (2016) and Föllmer & Weber (2015). Throughout this paper, we focus on three prominent
examples with different properties:

(a) Value at risk: The most commonly used risk measure in practice - and in particular the
prescribed risk measure for Solvency II purposes - is value at risk (V@R). For a given level
α ∈ (0, 1), we denote by V@Rα the monetary risk measure defined by the acceptance set

AV@Rα = {X ∈ X |P[X < 0] ≤ α}. (12)

For a financial position X, the value V@Rα(X) specifies the smallest monetary amount that
needs to be added to X such that the probability of a loss becomes smaller than α:

V@Rα(X) = inf{m ∈ R|P[X +m < 0] ≤ α}
=− sup{c ∈ R|P[X < c] ≤ α} = −q+

X(α),
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where q+
X(α) is the upper α-quantile of X.

Recall that V@Rα has two main deficiencies: Firstly, value at risk is not a convex risk
measure and may thus penalize diversification beyond the setting of Gaussian or more
generally elliptic financial positions. Secondly, V@Rα neglects extreme losses that occur
with small probability. These deficiencies of value at risk were a major reason to develop a
systematic theory of coherent and convex risk measures, as initiated by Artzner, Delbaen,
Eber & Heath (1999) and Föllmer & Schied (2002).

(b) Average value at risk: Another basic example is the average value at risk (AV@R), also
known as conditional value at risk, tail value at risk, or expected shortfall, which plays a
prominent role in the Swiss Solvency Test. The average value at risk at level β ∈ (0, 1] is
defined by

AV@Rβ(X) := 1
β

∫ β

0
V@Rα(X) dα, X ∈ X .

In contrast to value at risk, AV@Rβ accounts for extreme losses per definition, and it
provides incentives for diversification. More precisely, AV@Rβ is a coherent measure of risk.

(c) Range value at risk: Cont, Deguest & Scandolo (2010) suggest an alternative to V@R
and AV@R, called range value at risk (RV@R). Letting α, β > 0 with α+β ≤ 1, they define

RV@Rα,β(X) = 1
β

∫ α+β

α
V@Rγ(X) dγ, X ∈ X .

Note that the limiting cases of RV@Rα,β correspond to V@Rα for β → 0 and AV@Rβ

for α → 0. Like V@R, RV@R is a non-convex risk measure, and it may thus penalize
diversification.

B Proofs

Proof of Corollary 3.1.

Proof. By Example 2.6, we have 2ni=1RV@Rαi,βi(E1(δ)) = RV@Rα,β(E1(δ)) for α = α1 + . . .+αn,
β = max{β1, . . . , βn}. It is thus enough to show that

RV@Rα,β(E1(δ)) = −η2(δ)S2
0e
µ 1
β

(
Φ(Φ−1(α+ β)− σ)− Φ(Φ−1(α)− σ)

)
− η1(δ) + π. (13)

To this end, note first that

RV@Rα,β(E1(δ)) = RV@Rα,β(η2(δ)S2
1 + η1(δ)− π)

= η2(δ)RV@Rα,β(S2
1)− η1(δ) + π, (14)

since RV@Rα,β is cash-invariant and positively homogeneous. Hence, it remains to compute

RV@Rα,β(S2
1) = 1

β

∫ α+β

α
V@Rγ(S2

1) dγ = 1
β

∫ α+β

α
−qS2

1
(γ) dγ.

Using the quantile transformation rule for S2
1 = f(W1) with the increasing function

f(x) = S2
0 exp(µ − 1

2σ
2 + σx) combined with the fact that qX(γ) = E[X] + Φ−1(γ)σ(X) for

any normally distributed X, we obtain

RV@Rα,β(S2
1) = 1

β

∫ α+β

α
−qS2

1
(γ) dγ = 1

β

∫ α+β

α
−S2

0e
µ−1

2σ
2+σqW1 (γ) dγ

= 1
β

∫ α+β

α
−S2

0e
µ−1

2σ
2+Φ−1(γ)σ dγ = −S2

0e
µ−1

2σ
2 1
β

∫ α+β

α
eΦ−1(γ)σ dγ.
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Substituting y = Φ−1(γ) with dy = (1/ϕ(Φ−1(γ))dγ in terms of the density ϕ of the standard
normal distribution leads to

RV@Rα,β(S2
1) = −S2

0e
µ−1

2σ
2 1
β

∫ Φ−1(α+β)

Φ−1(α)
eσyϕ(y) dy

= −S2
0e
µ−1

2σ
2 1
β

∫ Φ−1(α+β)

Φ−1(α)
eσy 1√

2πe
−1

2y
2
dy

= −S2
0e
µ 1
β

∫ Φ−1(α+β)

Φ−1(α)
1√
2πe
−1

2 (y−σ)2
dy

= −S2
0e
µ 1
β

∫ Φ−1(α+β)−σ

Φ−1(α)−σ
ϕ(y) dy

= −S2
0e
µ 1
β

(
Φ(Φ−1(α+ β)− σ)− Φ(Φ−1(α)− σ)

)
.

Together with (14) this proves (13). Since

E[E1(δ)] = η2(δ)S2
0e
µ + η1(δ)− π,

the formulae for 2ni=1SCRi
A(E1(δ)) and 2ni=1SCRi

mean(E1(δ)), respectively, follow from (2) imme-
diately.

Proof of Corollary 3.2.

Proof. Recalling that the limiting cases of RV@Rα,β correspond to V@Rα for β → 0 and AV@Rβ

for α→ 0, the claim follows from Example 2.6 and Corollary 3.1. More precisely, we have

V@Rα(E1(δ)) = lim
β→0

RV@Rα,β(E1(δ))

= lim
β→0

(
−η2(δ)S2

0e
µ 1
β

(
Φ(Φ−1(α+ β)− σ)− Φ(Φ−1(α)− σ)

)
− η1(δ) + π

)
= −η2(δ)S2

0e
µ
(
d
dβΦ(Φ−1(α+ β)− σ)

)
− η1(δ) + π

= −η2(δ)S2
0e
µ ϕ(Φ−1(α)−σ)

ϕ(Φ−1(α)) − η
1(δ) + π

= −η2(δ)S2
0e
µ exp(σΦ−1(α)− σ2

2 )− η1(δ) + π.

In the same manner, we derive

AV@Rβ(E1(δ)) = lim
α→0

RV@Rα,β(E1(δ))

= lim
α→0

(
−η2(δ)S2

0e
µ 1
β

(
Φ(Φ−1(α+ β)− σ)− Φ(Φ−1(α)− σ)

)
− η1(δ) + π

)
= −η2(δ)S2

0e
µ 1
βΦ(Φ−1(β)− σ)− η1(δ) + π,

since limα→0 Φ−1(α) = −∞ and limα→0 Φ(Φ−1(α)− σ) = 0.
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